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Abstract

We embark on a case study for the scalar delay equation
i(t) = AMf(z(t— 1) + b (x(t —9) + z(t — 9 — p/2))

with odd nonlinearity f, real nonzero parameters A, b, and three positive
time delays 1, 9, p/2. We assume supercritical Hopf bifurcation from x = 0
in the well-understood single-delay case b = oco. Normalizing f/(0) = 1,
branches of constant minimal period px = 27 /wy are known to bifurcate
from eigenvalues iwy, = i(k + 3)7 at A, = (—1)F 1wy, for any nonnegative
integer k. The unstable dimension is k, at the local branch k. We obtain
stabilization of such branches, for arbitrarily large unstable dimension k.

For p:= pg the branch & of constant period py persists as a solution, for
any b # 0 and ¥ > 0. Indeed the delayed feedback term controlled by b
vanishes on branch k: the feedback control is noninvasive there. Following
an idea of [Pyr92], we seek parameter regions P of controls b # 0 and delays
¥ > 0 such that the branch k& becomes stable, locally at Hopf bifurcation.
We determine rigorous expansions for P in the limit of large k. The only
two regions P = P* which we were able to detect, in this setting, required
delays 9 near 1, controls b near (—1)*-2/wy, and were of very small area of
order k=%, Our analysis is based on a 2-scale covering lift for the frequencies
involved.



1 Introduction and main result

In an ODE setting, delayed feedback control is frequently studied in systems like
(1.1) x(t) =F(x(t)) + B(x(t) — x(t — 7))

with x € RY, smooth nonlinearities F, and suitable N x N matrices 3 mediating
the feedback. If the uncontrolled system [ = 0 possesses a periodic orbit x,(t)
of (not necessarily minimal) period p > 0, then x,(f) remains a solution of (1.1)
for time delays 7 = p and any control matrix 5. In this sense, the delayed
feedback control is noninvasive on x,(t). The linearized and nonlinear stability
or instability of x,(t), however, may well be affected by the control term (3.

The above idea was first proposed by Pyragas, see [Pyr92]. It has gained sig-
nificant popularity in the applied literature since then, with currently around
3000 publications listed. See [Fie&al08] and [Pyr12] for more recent surveys.
Part of this success is due to the simple implementation: let § measure some
components of x(t), store, and feed the difference x(t) — x(t — 7) back into the
system. Then vary the feedback gain of 3, and the delay 7, until a periodic solu-
tion of (not necessarily minimal) period p = 7 is found. If yes, publish. In fact, no
previous knowledge of the nonlinearity F is required to attempt this procedure,
or one of its many variants.

Mathematical results are still relatively scarce, compared to the applied signif-
icance of Pyragas control. For example it has been claimed that hyperbolic
periodic orbits x,(t) with odd unstable dimension, i.e. with Floquet multipliers
|l > 1 of odd total algebraic multiplicity, cannot be stabilized by (1.1). See
for example [Nak97]. This purported odd number limitation has been refuted
by [Fie&al07]; see also [Ju&al07, Fie&al08, Fie08] and the references there for a
thorough discussion. An explicit counterexample was based on x € R? and F in
truncated Hopf normal form, a.k.a. Stuart-Landau oscillator. A careful justifi-
cation of the normal form procedure, in general, was given by [BrPoSill]. For
an exciting investigation of traveling wave stabilization by noninvasive delayed
spatio-temporal feedback see [PoSi07]. Systematic studies of pattern selection at
symmetry breaking Hopf bifurcation have been initiated in coupled oscillator set-
tings; see for example [NakUe98, Fie&all0, PoBrSil3, Schn13, Schnl4, Cho&all4]
and the references there.

One fundamental disadvantage of the Pyragas method (1.1), from a theoretical
perspective, is the replacement of the ODE x = F(x) in finite-dimensional phase
space X = RY by the infinite-dimensional dynamical system (1.1) in a history
phase space like x(t + ) € X = C%([—, 0], RY). On the other hand, the very
existence of a periodic solution x(t), for vanishing control 8 = 0, requires N = 2.

In the present paper we therefore explore the Pyragas method of delayed feedback
control, in a slightly modified form, for the very simplistic scalar case

(1.2) (t) = Af(x(t— 1))+ b Yot —9) +z(t — 9 —p/2)).



We consider nonzero real parameters A\, b and positive delays. The characteristic
equation for eigenvalues p of the linearization of (1.2) at parameter A and the
trivial equilibrium z = 0 reads

(1.3) = Xe * 4 bt (e 4 em P/ 2ny)

Here we have assumed f(0) =0, f'(0) = 1 for simplicity.

The uncontrolled limit b = oo of vanishing feedback corresponds to the scalar
pure delay equation

(1.4) B(t) = Af(x(t —1))

with |A| normalizing the remaining delay to unity. Throughout the paper we
assume f € C? to be odd, with normalized derivative at f(0) = 0:

(1.5) fl=z) = —=f(z), f(0)=1 f"(0)<0.

See [KapYor74] for an analysis of odd periodic solutions x(t) of constant minimal
period

(1.6) pr=2mjwy, wy = (k+3)m.

The periodic solutions originate by Hopf bifurcation from imaginary eigenvalues
+iwy at x = 0 for parameters

(1.7) A=\ = (=1

Here k € N is any positive integer. See [Dor89] for secondary bifurcations from
these primary branches. The case @(t) = g(x(t), z(t — 1)) of the general scalar
delay equation with a single time lag has also attracted considerable attention; see
for example [Wri55, BeCo63, Hale77, HaleVL93, Die&al95, Wu96, KolMysh99,
Nu02] and the many references there. Most notably, Mallet-Paret has discovered a
discrete Lyapunov functional for g with monotone delayed feedback, [MP88|, with
significant global consequences [FieMP89, Kri08, MPSe96a, MPSe96b, Wal95].
More recent developments study this scalar equation with state dependent delays,
where the time delay 1 is not constant but depends on the history x(t + -) of the
solution itself; see for example [Har&al06, MPNu96, MPNu03, MPNull, Nu02].

But let us return to the simple setting (1.4) — (1.6) of a pure delay equation.
In section 2 we will review the reduction by [KapYor74] to a planar Hamiltonian
ODE system which accounts for all local Hopf bifurcations (1.7) at A = A, k € N.
This is due to an odd-symmetry

(1.8) 2 (t + pr/2) = —ap(t)

at half minimal period py, for all real t. Remarkably, global solution branches of
constant minimal period p, emanate from each A = \; towards A of larger absolute
value, in the soft spring case of strictly decreasing secant slopes = — f(x)/x,
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Figure 1.1: Additional Hopf curves (colored solid), zero eigenvalue (colored
dashed), and Takens-Bogdanov bifurcations (TB, black) at fived X\ = Ny, for odd
k=19, (a) top, and even k = 10, (b) bottom. The Hopf curves are generated
by the parameters ¥ and b of the delayed feedback terms in (1.2). Solid colors
indicate orientation with respect to increasing frequency w > 0: red for increasing
and blue for decreasing values of ¥ = ¥(w), respectively. In view of lemma 3.3 the
more stable side is found towards smaller |b|, at red Hopf branches, and towards
larger |b|, at blue branches. By lemma 3.4 the same statement holds true for the
color coding of the dashed line at the zero eigenvalue.
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for x > 0. In particular all Hopf bifurcations are locally nondegenerate and
quadratically supercritical under the sign assumption f”(0) < 0 of (1.5). See
fig. 3.1 for a bifurcation diagram.

At supercritical Hopf bifurcation it is easy to determine the unstable dimension
E, i.e. the total algebraic multiplicity of Floquet multipliers |u| > 1, of the
emanating local branch of periodic orbits. It coincides with the total algebraic
multiplicity

(1.9) E=E(\) =k

of the eigenvalues with strictly positive real part for the linearization y(t) =
Ary(t — 1) of the pure delay equation (1.4) at the Hopf point A = A\g, z = 0. See
for example [Die&al95, Hale77, HaleVI1.93].

Our modified Pyragas control scheme (1.2) with p:= pj is noninvasive on the
global Hopf branches of constant minimal period p; which emanate from Hopf bi-



Figure 1.2: Zoom of fig. 1.1 in scaled parameters © = 5 + (0 — 1)wi, B =

1

s(=1)*bwy; see also (4.3). Hopf curves (colored solid), zero eigenvalue (colored

dashed), and the Takens-Bogdanov point (TB, black) at fived A = A\, for odd
k =9, left, and even k = 10, right. Color codings indicate change of stability
as in fig. 1.1. Some resulting unstable dimensions E = E(J, b) are indicated in
parentheses as (E). Note E = 0 in the tiny green Pyragas regions P*.

furcation at A\ = A\gz. This is due to the odd-symmetry (1.8). In particular the
global and local Hopf branches with this symmetry are preserved.

We define a Pyragas region Py to be an open set of those real control parameters
b # 0 and ¢ > 0 for which the periodic solutions zx(t) emanating by local
Hopf bifurcation from A = Az, x = 0 become linearly asymptotically stable for
sufficiently small amplitudes. With this definition we can now formulate our main
result. See fig. 1.1 for an illustration of Hopf curves, and fig. 1.2 for a zoom into
the Pyragas regions Pki, in the cases £k =9 and k = 10.

Theorem 1.1. Consider the system (1.2) of delayed feedback control for the scalar
pure delay equation (1.4). Let assumptions (1.5) of oddness and normalization
hold for the soft spring nonlinearity f € C®. Then the following assertions hold
for large enough k > k.

There exists a Pyragas region Py = P U P, composed of two disjoint open sets
P,f # @. Fach region Pp, . = %, is bounded by the horizontal zero line

(1.10) b=by:=—2/\ = (=1)¥-2/wy

and three other analytic curves vy and Vi, 4+, oll mutually transverse. The zero
line (1.10) indicates an additional zero eigenvalue of the linearization of (1.2) at
x = 0. The other curves indicate additional purely imaginary eigenvalues.

Theorem 1.2. Let the assumptions of theorem 1.1 hold and define e:= 1/wy.
Then an approzimation of the Pyragas regions (9, b) € Py, v = £, up to error
terms of order €3, is given by two parallelograms. One ezact horizontal boundary is
b=y, = (—=1)%2¢; see (1.10). The other horizontal boundary Y is approzimated

by
(1.11) b= (—1)"2+be*+....



The sides ~yy, o are given, up to order g3, by the parallel slanted lines through the
four points at b = by,

(1.12) he=1—(F—1q)etOp2+ ...,

with slopes o},. Here numerical values for the offsets q, Opya, bj, and the slopes
o}, of the Pyragas parallelograms are given by

q= 0.88...,

Opiz = —173...,
b= 149...+ (=DF-1.02...,
oL = (=1)F1,.242.. ..

(1.13)

Ezact values are given by the expressions

qg= arccos(2/m),
Orz = 7(V(7/2)> =1-2q),
b, = (m+29}) cos Py,
op =  2(=1)F1/(1/2)2 —1.

(1.14)

Here we have used the abbreviations
(1.15) . = (—1)*, arcsin q.

In particular the areas |73,;t| of the Pyragas regions are of very small order £*.
The relative areas are approximately reciprocal,

5.37... forevenk ,

1.1 lim |PF|/|Pr| = b /by =
(1.16) dm [Pl/[Pe | = b /b, {0.19... forodd k.

The remaining sections contribute to the proof of theorem 1.1 and the closely
related e-expansions of the Pyragas regions in theorem 1.2. We give a brief
outline here. For a summary of sections 2 — 8, on a precise technical level, we
also recommend the proof of theorems 1.1, 1.2 in section 9.

In section 2 we review the results by [KapYor74] on global Hopf bifurcation of
the odd-symmetry periodic solutions x(t) for the pure delay equation (1.4).

The main part of our paper is devoted to the characteristic equation (1.3) which
involves three exponential terms arising from the three time delays. For a single
delay see for example [BeCo63]. For two delays see [Nu78]. Section 3 addresses
the characteristic equation (1.3) for the eigenvalues p of the modified Pyra-
gas scheme (1.2) at Hopf bifurcation A = A, x = 0. We first study the appearance
of an additional zero eigenvalue p = 0 at the boundary line b = b, = (—1)*2¢
of (1.10) for the Pyragas regions P%. We also address the resulting sub- or



super-critical crossing direction of the Hopf eigenvalue p1 = + 1wy as A increases
through A = Ay, in the (9, b)-plane of control delay ¥ and control amplitude
b. In particular, this will assure supercritical Hopf bifurcation with respect to
A for parameters (9, b) fixed in the Pyragas stabilization regions P*. As a con-
sequence linear asymptotic stability of the local Hopf branches bifurcating at
A=\, x =0, as asserted in the theorems, will be guaranteed by

(1.17) B, b) =0.

in the supercritical region and off the curves of other purely imaginary or zero
eigenvalues. Similarly to (1.9), here Ej indicates the total algebraic multiplicity
of eigenvalues with strictly positive real part at A\ = A\, x = 0, for the lineariza-
tion of the delayed feedback control scheme (1.2). This reduces the nonlinear
stability question, near Hopf bifurcation, to the spectral question (1.17) for the
characteristic equation.

In section 4 we rescale the parameters (¢, b) to (0, B), with ¢, and introduce a
2-scale lift

(1.18) Qe =w=+ (=1)Fr/2 (mod 27)

for purely imaginary Hopf eigenvalues +iw of the characteristic equation (1.3).
Here the rapid angle variable —7/2 < ® < 37/2 (mod 27) is in S*. The 2-scale
lift allows us to view 2 and ® as independent parameters, first, and to solve
the properly rescaled characteristic equation (1.3) for (©, B). On the cylinder
(2, ®) € [0,00) x S, the relation (1.18) defines an e-dependent hashing by
slanted lines of slope 1/¢ and horizontal distance 2we. Therefore (1.18) also
defines an e-dependent hashing of the resulting regions

(1.19) 0, B) = (O, B)(Q, )

in the rescaled (9, b)-plane. See also (4.3), (4.6) below. The hashing provides the
rather messy diagram of Hopf curves illustrated in fig. 1.1.

Section 5 obtains the Hopf curves v; ,, ¢ = & on the boundaries of the Pyra-
gas regions P* from the limiting case {2 = 1. Section 6 studies the Hopf curve
(9, b) € 7P emanating from the Takens-Bogdanov point in the limit Q = 0. Sec-
tion 7 addresses the characteristic equation (1.3) along the zero line (1.10), i.e.
b = b, = (—1)F2¢, of zero eigenvalues. In particular we determine where the
remaining Hopf curves cross this line, and in which direction they cross. This
keeps track of the strict unstable dimensions E(b, ¥) along the zero line. The
complementary section 8 investigates all Hopf crossings of the vertical half line
0 =1-1ire, (=1)¥(b —by) > 0. In section 9, the vertical half line and the
horizontal zero line will provide access to the unstable dimensions E (¢, b) in the
Pyragas regions P*. See in particular lemma 9.1. We also summarize the ex-
pansions of sections 4 — 7 to prove theorem 1.2, and thereby theorem 1.1. We
conclude in section 10 with a brief discussion of our results.
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2 The pure delay equation

In this section we briefly summarize properties of odd-symmetry periodic solu-
tions of the scalar pure delay equation

(2.1) z(t) =Af(z(t—1)).
In other words, we assume odd nonlinearities
(2.2) f(—z) = —f(x)

and seek solutions of the odd-symmetry form
(2.3) z(t—2) = —xz(t).

See [Dor89] for a careful study of such periodic orbits, including symmetry break-
ing secondary bifurcations. We follow [KapYor74] to convert this problem to
Z4-symmetric solutions ¢ = (£, n) of the Hamiltonian ODE system

E(t)=\f(n(1))

(24) () = <A (& (1)

with minimal period
(2.5) p=Dpr=21/w, =4/2k +1).

Here k € Ny is any nonnegativ integer. See lemma 2.2 and also (1.6). In lemma 2.3
we collect some standard facts on monotone dependence of minimal periods on
amplitude, for the Hamiltonian system (2.4), to identify all Hopf bifurcation
points A = A\, = (—=1)*wy, = 0, of (2.1) and establish supercriticality under our
standing assumptions (1.5). See also [YuGuol4] for a recent survey.



As a prelude we study the spatio-temporal symmetry of solutions ¢ = (£, 1)
of (2.3) with minimal period p > 0. Let

(2.6) p(&, n) = (n, =§)

denote standard clockwise rotation by 7/2. Iteration of p generates the standard
planar action of the cyclic group (p) = Z4 by right rotation. See also [GoStSch88,
Fie88, ChoLau00] for a general background.

Proposition 2.1.

(i) The ODE system (2.4) is Hamiltonian with respect to

3
@7 H(E )= F() + F), F@%zAf@Mé,

and the standard symplectic structure, up to scaling factor X # 0.

(i) If f is odd, as in (2.2), then (2.4) is Zy-equivariant: ((t) is a solution
if, and only if, p((t) is a solution, for the rotation p given in (2.6). In
particular any nonstationary periodic solution ((t) of (2.4) which contains
the origin ¢ = 0 in its interior satisfies

(2.8) p(t) = C(t£p/4).
Here p denotes the minimal period of ((t).

(11i) Assume f is odd and also satisfies the sign constraint
(2.9) zf(z) >0

for all x > 0. Then any nonzero solution ((t) of (2.4) is nonstationary
periodic and contains the origin in the interior. Moreover ((t) satisfies

pc(t):{g(t—p/ll) for A<0,

(2.10) ¢(t —3p/4) for A>0.

Proof. Claim (i) is obvious. Equivariance claim (ii) is straightforward:
fipC=pC= (i, =) = (=M(©), =M(m) =
= Af(=€), =f) = (Af((pO2), =Af((pO1))

i.e. p( solves (2.4) if, and only if, ( does. Here we used oddness (2.2) of f in the
fourth equality.

(2.11)

To prove symmetry claim (2.8) first observe that the periodic orbits ¢ and p(
must intersect and hence coincide. Therefore Z, is a spatio-temporal symmetry

of ¢:
(2.12) pC(E) = C(t +10) £ 0



for some fixed ¢y and all real t. Since 0 is the only fixed point of any non-identity
element of Z,, and p* = id, this implies ¢y = 4p/4. This proves claim (ii).

To prove claim (iii), first observe that the primitive F(&) of f is strictly increas-
ing with |¢|, by positivity assumption (2.9). In particular any level set of H is
bounded. Moreover 0 = min H is the only critical value of H, and has the unique
critical point ¢ = 0. All other nonempty level sets of H are regular Jordan curves
with ¢ = 0 in the interior. In particular any nontrivial solution ((t) # 0 is
periodic around (&, n) = (0, 0).

The remaining symmetry claim (2.10) follows from claim (ii) and positivity as-
sumption (2.9). Let n(0) > 0 = &(0) denote an intersection point of ((t) with
the positive 7-axis and assume A > 0. Then (2.9) implies £(0) = Af(5(0)) > 0.
Hence ((t) crosses the positive n-axis clockwise. Equivariance implies clockwise
crossing of all other half axes, successively at times p/4, p/2, 3p/4. In particular
pC(t) =C((t+p/4) = ((t—3p/4), initially at ¢ = 0, and hence for all real t. Since
A — —\ just reverses the time direction in ODE (2.4), this proves claim (2.10)
of (iii), and the proposition. D>

Lemma 2.2. [KapYor7j] Assume oddness (2.2) and positivity (2.9) of the non-
linearity f. Consider the transformation

(2.13) &) =a(t), n(t)=a(t—1),

Then x(t) is a nontrivial periodic solution of the pure delay equation (2.1) with
odd-symmetry (2.3), for all real t if, and only if, ((t):= (£(t), n(t)) satisfies the
following. The Hamiltonian ODE (2.4) is solved by ((t) #Z 0 with minimal period

(2.14) p=pr=4/2k+1),

for some k € Ny. See (1.6). More precisely k is odd, for A\ > 0, and even, for
A <0.

Proof. Let x(t) # 0 solve (2.1) with odd-symmetry (2.3). Then (2.13) implies

(2.15) £ty =a(t) = M (x(t — 1)) = M (n(t)) -
Because f is odd, (2.1), (2.3) and (2.13) also imply

N(t) =@t —1) = Af(z(t — 2)) = Af(—=(t)) =
= —Af(z(t) = =Af(£@D) -

Therefore ¢ = (&, ) solves the ODE (2.4).

(2.16)

By proposition 2.1, the solution ¢ = ((t) # 0 is periodic with minimal period
p > 0 and satisfies (2.10). By (2.3) we have p = 4/m for some positive integer



m. Consider A < 0 first. Then the first components of (2.10), (2.6) and the
transformation (2.13) successively imply

(2.17) §(t—p/4) = (p¢(t), =n(t) = x(t — 1) = £(t — mp/4),

Therefore (2.13) also implies ((t — p/4) = ((t — mp/4). Because p > 0 is the
minimal period of { we conclude m = 2k+1 for some even k£ € Ny. The argument
for A > 0 is completely analogous and is omitted. This proves the only-if part of
the lemma.

To prove the if-part, let ((t) = (£(¢), n(t)) #Z 0 solve the Hamiltonian ODE (2.4)
with minimal period p = p,, = 4/(2k + 1) as in (2.14). Again we only consider
the case A < 0 of even k& > 0. We first show that x(t):= £(t) satisfies the pure
delay equation (2.1). By ODE (2.4) this is equivalent to showing

(2.18) n(t) =& —1).

To prove claim (2.18) we substitute 1 = (2k + 1) p/4 to obtain

(219)  €(t—1) =&t — (2k+1)p/4) = &t —p/4) = (pC(D)), = ().

as claimed in (2.18). Similarly

(2.20) E(t—2) =¢&(t—2p/4) = (0 (1), = —€(1)

implies odd-symmetry (2.3) of x(t) = £(t), and the lemma is proved. >

For soft spring nonlinearities f it is assumed that
(2.21) z— f(x)/z >0

decreases strictly with increasing |z| > 0. For pendulum equations f +A2f(&) =0
it is well-known that the minimal period p* then increases strictly with amplitude;
see e.g. [BiR062, Scha90]. Here we use superscripts A to emphasize dependence
on the scaling parameter A\ # 0. The same arguments apply to solutions ¢(*(¢)
of (2.4) and their minimal periods p*(a) > 0. Amplitude v/ H can be measured by
the value of the Hamiltonian H = H((?), for example; see proposition 2.1(i). A
global bifurcation diagram for the odd-symmetry solutions 2*(¢) of (2.1) is easily
derived.

Lemma 2.3. Consider odd nonlinearities f which satisfy (2.21). Then non-
trivial odd-symmetry solutions x*(t) of the pure delay equation (2.1), (2.2) with
amplitude H occur if, and only if,

(2.22) A= A(H) = (1) 2k + 1) p (H) /4,

for any k € Ny. Here p(H) indicates the minimal period of the solution ((t) =
(&(t), n(t)) of the ODE Hamiltonian system (2.4), for N\ =1 and H = H((). The

10



solution z(t) is given by EMt) = £(At) and possesses constant minimal period
pe=p(H)/|A\l =4/(2k + 1).
In particular, local Hopf bifurcation of (2.1), (2.2) with f'(0) =1 only occurs at

(2.23) A= (0) = (=),

as mentioned in (1.7). All bifurcating periodic solutions x*(t) satisfy odd-symmetry
property (2.3), locally. Under assumption (1.5) all Hopf bifurcations are super-
critical.

Proof. By lemma 2.2, any nontrivial odd-symmetry solution 2*(¢) of (2.1), (2.2)
arises as the first component z*(t) = £*(t) of a solution (*(¢) of the Hamiltonian
ODE (2.4) with constant minimal period

(2.24) P =pr=4/2k+1) >0,

for some k € Ny of the appropriate parity; see (2.14). Rescaling time in (2.4) we
obtain

¢ty = (At),

(2:25) P =/

with the same Hamiltonian H({*) = H(¢') = H. Dropping the superscript 1, for
A =1, and combining (2.25), (2.24) we obtain the global bifurcation dlagram

(2.26) A= (=DM = (1) p/pt = (1)K + 1) p (H) /4,

as claimed in (2.22).

To prove (2.23) we observe that f’(0) = 1 implies p (H) — 27 for H — 0. Since
wr = (k+1/2)7 by (1.6) this proves (2.23) alias (1.7); see also the characteristic
equation (1.3) at b = oco. In lemma 3.1 below we will show that the simple
eigenvalues 1 = i wy, of the characteristic equation (1.3) for b = oo are the only
purely imaginary eigenvalues at A = A\;(0), and cross the imaginary axis from
left to right transversely, as |A| increases through A = A\;(0). Uniqueness of local
Hopf branches therefore implies odd-symmetry of the periodic orbits z(t), for odd
nonlinearities f.

Monotonicity of the time-map H + p'(H) implies bifurcation to larger values of
|A| from the Hopf bifurcation at A = \¢(0), x = 0, for soft spring nonlinearities
f. The assumptions f'(0) = 1, f”(0) < 0 imply the soft spring property (2.21)
to hold locally, by Taylor expansion of odd f. Perturbations of f"”(0) show
that the Hopf bifurcation is in fact quadratically nondegenerate. Therefore the
Hopf bifurcations at A\ = A\g(0) are supercritical. This proves the present lemma
once the spectral analysis is completed, in lemma 3.1. D

11



3 The characteristic equation

We linearize the delay equation (1.2) at x = 0 and seek exponential solutions
exp(ut) to obtain the characteristic equation (1.3) for u € C. For purely imagi-
nary g =1w, w > 0, we obtain

(3.1) iw =AY+ 2" cos (pw/4) e tw(0+p/4)

Here we have used the normalization f’(0) =1 of (1.5). A trivial solution at the
Hopf bifurcation points A = \; is given by

(3.2) A= N = (—1)“1%, w=uwp = (k+ %)Wa p=pr = 27/wy

for all real values of b and ¥, of course. In lemma 3.1 we study the transverse
crossing of ; = 44wy through the imaginary axis, for the uncontrolled case b = oo,
as A increases through ;. In lemma 3.2 we show how the crossing direction of
at A = Ay depends on b, ¥. Pinning A = A\; and p = pi, in lemma 3.3, we begin
to study the resulting additional Hopf curves

(3.3) (9, b) = (V(w), b(w)),

oriented along increasing frequency w > 0. This is based on the pinned charac-
teristic equation (3.15). In particular we discuss the strict unstable dimensions

(3.4) E = E(0, b)

to either side of any Hopf curve; see (3.18). The eigenvalue zero and the Takens-
Bogdanov point w — 0 are addressed in lemma 3.4.

Lemma 3.1. Let b = oco. Then purely imaginary eigenvalues occur if, and only
if, A = X\ for some k € No. The simple eigenvalues p = () with p(Ag) = £iwg
satisfy

(3.5) sign Re /' (\x) = sign Ay, .
At X\ = N, this is the only pair of purely imaginary eigenvalues. Moreover
(3.6) E=E\ =k

holds for the total strict unstable dimension E of v = 0 at any value A\ between
Ae—2 and Ag, including A = \j.

This lemma shows that the local Hopf bifurcations of the pure delay equation (2.1)
are indeed supercritical; see also lemma 2.3. The odd-symmetry (2.3) of the pe-
riodic solution is inherited from the linearization because f is odd. Standard ex-
change of stability in the two dimensional center manifolds establishes the strong
unstable dimension & of the bifurcating local branches [HaleV1.93, Die&al95]. See
fig. 3.1 for illustration. By noninvasivity of Pyragas control, these bifurcations
remain unaffected by (b, ¥) for p = py — but unstable dimensions may change.

12
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Figure 3.1: Supercritical Hopf bifurcations at A = A\,. Note the strict unstable
dimensions E(X\;) = k of the trivial equilibrium, in parentheses (k), and the
inherited unstable dimensions k] of the local branches of bifurcating periodic orbits
with constant minimal period p, = 4/(2k + 1). Amplitude is measured by the
constant Hamiltonian H'? of (2.7). See lemmas 2.3 and 3.1.

Proof. For b = oo, the characteristic equation (1.3) simplifies to
(3.7) XA, p)i=p—Xe*=0.

Decomposing into real and imaginary parts, we obtain nonzero purely imaginary
eigenvalues ;1 = 1w if, and only if, A = A\, w = wy, k € Ny. Partial differentia-
tion of x(\, p) at A = A\, p = iw yields

Oux =1+ Npexp(—iwy) =1+iw, #0,

k-

(3:8) X = —exp(—iwg) = (—1)%.

This shows simplicity of +iw; and absence of other purely imaginary eigenvalues
at A = \;. Furthermore
sign Re 1//(\y,) = sign Re (—9\x/9,x) = sign((—1)*"'Im d,x) =

3.9
(39) = (=) =sign Ay,

by implicit differentiation of xy = 0. This proves claim (3.5).

To determine E(\) we consider the simple real eigenvalue ;1 = 0 at A = 0. Real
continuation p(\) yields ¢/(0) = 1 and hence E(A) = 0 for A < 0 and E(\) =1
for A > 0 near 0. At A = A, crossing (3.5) implies that E(\) increases by two,
alternatingly at negative and positive A = )\, depending on the even and odd
parity of k, in the direction of increasing |A|. This proves claim (3.6), and the
lemma. D

Lemma 3.2. In the notation of lemma 3.1 but now for arbitrary real control
parameters b # 0, ¥ > 0 we obtain transverse crossing

(3.10) sign Re p//(A,) = (—1)"*'sign b - sign (b + mw;, sin(wy9))

for monzero right-hand sides.

13



Proof. Analogously to (3.7), (3.8) we let x = x(A, u) denote the difference
between the left-hand and right-hand sides of the full characteristic equation (1.3).
At A= A\, = iwg, p = pr = 27/wy, the partial derivatives are

(311) @MX: 1+iwk_%e—iwkﬂ7

and dyy = (—1)*i as before. Following (3.9) we obtain
sign Re p//(A,) = sign((—1)*"' Im d,x) =

1\ Pk .
=(—1) &gn(wk +3 sin(wg 19)) :

This proves (3.10). D>

(3.12)

For small ¢ = 1/wy, our theorems 1.1 and 1.2 claim Pyragas regions with b =
(—1)¥1.2¢ 4 .... Since (3.10) shows that the direction Re u’(\;) switches at b
of order €2, only, we may safely ignore this switching henceforth. In other words
we may safely assume supercritical switching

(3.13) signRe p//(\) = (—1)",

henceforth. In particular we achieve Pyragas stabilization of the supercritical
Hopf branch bifurcating at A = \;, x = 0, if, and only if, we show

(3.14) E@,b)=0

for the total unstable dimension £ = E(J, b) of (1.3) at fixed A = A\, =
(=1 wy, p = pr = 27/wy as in (3.2). This assumes absence of further purely
imaginary eigenvalues, of course. For this reason we now fix A = A\, p = p, and
study the pinned characteristic equation

(3.15) 0=xr(u, 9,0) = p— e b e (1 +e—ppu/2).

We first discuss the additional Hopf curves 0 < w +— (9(w), b(w)) of (3.3), which
result from the pinned characteristic equation

(3.16) 0= xe(iw, 9, b) =iw — \e @ — 207 L e (HPR/Diw o5 (p w /4) .

The next two lemmas relate, in particular, the red/blue color-coding of figs. 1.1,
1.2, 4.1 to the change of stability by decreasing [b|; see (3.18) and (3.23).

Lemma 3.3. Decomposing x into real and tmaginary parts we obtain the sign
of the Jacobian determinant

(3.17) signdet Oy, )Xk (iw, ¥, b) = —signb,

at xg =0 and 0 < w # wi. In particular the Hopf curves (3.3) are well-defined.
For b < 0 and nonvanishing tangents, the total unstable dimension E(9, b) to the
right of the oriented Hopf curve exceeds the left value by 2. For b > 0 this jump
15 reversed. In symbols

(3.18) (B, b)]5" = —2sign®,

left

along any Hopf curve oriented by increasing frequency w > 0.
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Proof. Consider w > 0. To prove (3.17) we can ignore the common complex
prefactor to the columns of the Jacobian Oy ) X% which equals 7w — Ay exp(—iw)
at 4 = iw and x; = 0. Note that the prefactor vanishes at w = wy, only; see (3.7).
Therefore

(3.19) sign det Oy, ) Xx(iw,V, b) = signdet (_Ow _(1)/b> ’

proving (3.17).

To prove (3.18) we observe that Oy, x preserves orientation, for b < 0. Since x
is complex analytic in p, we also have orientation preservation by det d,x > 0,
at nonvanishing tangents to the Hopf curves (3.3). Therefore the implicit map

(3.20) g (), b(n))

and its local inverse both preserve orientation. Since E jumps by +2, trivially,
when p crosses the positively orientated imaginary axis left to right, the same
holds true when (¥, b) crosses any Hopf curve left to right, for b < 0. For b > 0
the sides in (¢, b) are reversed, because det gy, 5)x < 0 there. This proves (3.18)
and the lemma. D]

Lemma 3.4. The pinned characteristic equation xx(u, 9, b) = 0 of (3.15) admits
an eigenvalue = 0 if, and only if,

(3.21) b=bpg = (—1)F-2/w.
This zero =0 of xx is algebraically simple for all values of V¥, except at
(3.22) O =drp =1+ (=2 + (=1)"") Jw,

where an algebraically double zero pn = 0 of xx occurs. We call (9rg, brg) the
Takens-Bogdanov point of xx. For ¢ # drg, the real continuation p = (9, b) of
the simple zero (¥, brg) = 0 possesses nonvanishing partial derivative

(3.23) sign 9y p (9, brp) = (_1)k3ign (U —0).

Proof. Taylor expansion of the characteristic function xx(u, ¥, b) in (3.15) with
respect to p, at p = 0, yields

(3.24) Xk (1t 9, b) = xo(0, 0) + xa (9, b+ x2(0, b)p® + ..,

where we have suppressed the index k in the coefficients. Explicitly, the coeffi-
cients are

xo(¥, b) = (=1)*wy — 2/b;
(3.25) x1(9, ) = (=), + 14 (20 + 7/wi) /b
Yo (9, b) = (—=1)Fwp /2 — (9% + 719wy, + %WQ/w,z)/b.

From xo = 0 we obtain the zero line (3.21) of b. Setting y; = 0, in addition, we
obtain the Takens-Bogdanov value (3.22) of ¢. Observing x2(drp, brg) # 0 shows
algebraic multiplicity two of u = 0, at b = Brg, ¥ = J1g. Implicit differentiation
with respect to b shows (3.23) and completes the proof of the lemma. D
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4 The 2-scale lift

In (4.2) below we introduce the 2-scale lift w — (2, ®) for the frequency param-
eter w of the Hopf curves. We begin with a suitable scaling to new variables

(4.1) (w, 9, b) — (Q, ¢, O, B), e:=1/wg.

Here € > 0 denotes a fixed small parameter corresponding to large k. Slow (2
and rapid ® correspond to the same variable w, and constitute the 2-scale lift
announced in (1.18). We rewrite the pinned characteristic equation (3.16) for the
Hopf curves in terms of the scaled variables (2, ®, ©, B); see (4.5). In lemma 4.1
we derive explicit expressions for the solutions

(4.2) (0, B)=(0(Q, ®), B(Q, ®))

of the rescaled pinned equations, by mere trigonometry.

For the remaining sections 4 to 7 it is useful to introduce suitable scaled variables
© and B by

J=14(-2+0)¢, =W-1)e'+2Z,

O :
b= (-1)F.-2Be¢, B:=1(-1)*be".

(4.3)

Here and below we abbreviate e:= 1/w; and suppress k. See fig. 4.1 for the
Takens-Bogdanov zooms of fig. 1.2 with increasing values of k.

For the single Hopf frequency i1 = ¢ w we introduce the 2-scale lift to the two new
variables €2, ® by

(4.4)

Here —7/2 < & < 37/2 is taken mod2n. In terms of the scaled variables
g, Q, &, ©, B we can rewrite the characteristic equation (i w, ¥, b) = 0 of (3.16),
as

(4.5) 0=x(Q,® 0, B):=1-®— B 'cos(ZQ) e "°.

Here we have replaced \g, py in (3.15) by wy, via (3.2), and then 1/wy, by €. Finally
all remaining e-terms were eliminated by the 2-scale lift (4.4). The advantage is
clear: the solution set of (4.5) is independent of €. The Hopf curves, i.e. the
solutions of the equation yx(iw, ¥, b) = 0 for the Hopf curve (9, b) = (¢, b)(w)
appear as a hashing

(4.6) d=Qec '+ (=1)*'7/2  (mod 27)

in the solution map (4.2), via the scaling (4.3). See also (1.18).
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Figure 4.1: Zooms of the Takens-Bogdanov spirals of fig. 1.2 in the scaled
coordinates (0, B) of (4.3), for increasing hashing values k. Note the Takens-

Bogdanov points at © = (=1)*1 B = 1. Color codings are as in figs. 1.1,
1.2.

17



B

141
12
10
08
06

041
02
00 Q

0 1 2 4 6 8
Figure 4.2: Domain of definition (4.8), hashed by k = 50, for the explicit ana-
lytic solution (4.7) of the scaled characteristic equation (4.5). Note the resonance

gap at 2 = 1.

Lemma 4.1. Explicit solutions of the scaled e-independent characteristic equation
X(Q, ®, 0, B) = 0 in (4.5) are given by the conjugate branches for (®, ©) in
terms of (2, B) as

cos’(F)/((1—1)B)* -1
® = +2 arctan ((1 -9 \/ (Q+1)2 — cos?(3 Q)/B? )

(4.7)

2 — (1 —-Btcos 52)?
(14 B7tcos Q)2 -2

O = +20 tarctan \/

Of course arctan s understood here to admit addition of any integer multiple 57
of . The branches are analytic for (), B) in the domain of positive Q) and B
such that

(4.8) |cos 5Q[/(14+Q) < B < |cos§Q]/|Q2—1].
Ezplicit solutions for (O, B) in terms of (Q, ®) take the polar coordinate form
(4.9) Be'® =cos(2Q)/(1—Qe'?).

For strictly positive values of  and B, the only relevant singularity of (4.9)
where analyticity may fail is at 2 =1 and & = 0.

Proof. By complex conjugation any real vector (2, ®, ©, B) solves (4.5) if, and
only if, (2, —®, —O, B) does. This accounts for the + branches.

The explicit expressions (4.7) follow by standard trigonometry in the triangle
0A1 of fig. 4.3. Indeed, the three sides of length 1, Q, B~! cos (5 Q) determine
the angles ® and 20, mod 27. The domain (4.8) is the region where two cir-
cles intersect: the circle of radius B™!|cos ©| around 1 and the circle of radius
2 around 1. Indeed the boundaries of the domain (4.8) are characterized by
tangencies of the circles, and hence by © = 0.

18



Figure 4.3: Trigonometry of (4.5). Left: the case 0 < Q < 1. Right: the case
1 < Q < 2. In either diagram we consider B > 1 in the domain (4.8); see also

fig. 4.2.

The explicit expression (4.9) follows by explicit polar coordinates (B, 20) from
(4.5).

Real analytic dependence on (€2, ®) holds for the expression (4.9) of B, © because
positivity of B excludes cos (5 €2) = 0. The only possible exception is 2 = 1 and
d =0.

Similarly, real analytic dependence on (£2, B) holds for the expression (4.7) of
®, ©. The only possible exception is the line @ = 1, 0 < B < /2. Analyticity
there, by continuation, will be shown in the next section. D

We cannot resist the temptation to include a geometric diversion here, which will
become quite relevant in section 7.

Proposition 4.2. Let x(2, ®, ©, B) =0, as in (4.5), and assume
(4.10) 0<Q<2 Q#1, B>1.

Then the following three estimates hold true:

(4.11) cos (20 + @) >0
(4.12) sin (20) - sin (QO + &) > 0
(4.13) (1 — ) (cos (20) — Qcos (O + @) > 0.
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Proof. Joint sign reversal +(®, ©) or addition of multiples of 27, separately,
to 20 or ® does not affect our claims. Therefore we may indeed assume the
geometric situation of fig. 4.3 which holds for B > 1 and, respectively, for 0 <
Q<land 1< <2,

Consider 0 < < 1 first. We show (4.11) first, i.e. the angle 7 — (20 + @) at
A in the triangle 0A1 is obtuse. Comparing with Pythagoras we have to show,
equivalently, that

(4.14) Q® + B?cos?(2Q) < 1

for all B > 1. For 0 < Q < 1 this latter claim is equivalent to the trivial
concavity assertion € < sin (5€2). This proves (4.14), and (4.11). Claim (4.12)
holds because the angles 20 and (20 4 ® are between 0 and 7.

Let the point P denote the orthogonal projection of 1 onto the straight line
through OA. See fig. 4.3, left. Then Q cos (2O + @) is the length of AP, because
Q2O + & is the acute angle at A in the right-angled triangle 1AP; see (4.11).
Clearly this length is shorter than the length cos(©20) of OP. This proves (4.13).

Consider 1 < 2 < 2 next; see fig. 4.2, right. Again Q20O and Q2 © + ® are between
0 and 7, proving claim (4.12). Pythagoras and 1 < Q* + B~2 cos? 58 imply that
the angle 0 < QO + ® < 7/2 at A in 1AP is still acute. This proves (4.11).

To prove claim (4.13) we first show that the angle 7 —Q© at 0 in AO1 is obtuse.
This follows by Pythagoras and 1+ B~ 2cos? 2Q < Q?, for B>1,1<Q < 2. In
particular the length Qcos (20 + ®) > 0 of AP exceeds the length cos Q© of
OP, this time. Again this proves (4.13) and the proposition. D

5 Expansions at Hopf resonance

In this section we study the scaled characteristic equation (4.5) in the limit Q2 — 1.
Since 2 = we = w/wyg, by (4.1) and the 2-scale lift (4.4), the value Q = 1 indi-
cates positions along the Hopf curves w — (¥(w), b(w)) where the control-induced
Hopf eigenvalue +iw is in 1:1 resonance with the pinned primary Hopf eigen-
value 417wy of the supercritical Hopf bifurcation which we plan to stabilize. In
lemma 5.2 we determine the curve in the (©, B)-plane where this resonance 2 = 1
occurs. In lemma 5.3 we determine the precise location of the 1:1 resonance in
terms of w, after hashing (4.4). We also determine an expansion, in terms of
the small parameters 2 — 1 and ¢, of the nearest passages of the Hopf curves
w +— (Y(w), b(w)) through the zero line B = 1. In section 9, this will provide
the right and left boundaries 7} , of the Pyragas regions P, as announced in
theorem 1.1. Our results are based on an expansion of the solutions

(5.1) ©=06(9, B)

at =1, in lemma 5.1.
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Lemma 5.1. With the continuation

(I)l,O = O7

5.2
(5:2) ©1,0 := arccos (2B/7)

for Q@ = 1,0 < B < %, the expressions (4.7) for ®, © possess a unique real

analytic extension to the domain (4.8). Ezplicit first order expansions with respect
to Q2 —1,
:I:(I):q)LO—i-(I)Ll'(Q—l)—i—... 5

5.3
(5:3) +0=0,0+0;,-(Q-1)+...,

are given by

Oy =—/(3/B)? -1,

©1,1 =4/(5/B)? — 1 — arccos (2B/7) .

(5.4)

The expansions are uniform for B in compact subsets of (0, 7/2).

Proof. Analytic continuation for €2 — 1 of the expression (4.7) for ® is obvious,
by analyticity of the quotient cos (5€2)/(€2 —1) — —7. A similar analysis for the
radicand of © provides the limit (5 — B)/(3 + B) at € = 1. This also completes
the proof of the analyticity claims of lemma 4.1. The expansions (5.2) — (5.4) are
straightforward, by symbolic or manual differentiation at 2 = 1, if we use the

elementary substitution

(5.5) 2arctan /{7~ = arccos T
for 0 < 7:= 2B/n < 1. This proves the lemma. >

Lemma 5.2. By analytic continuation through €2 = 1, the solution set of the
scaled characteristic equation (4.5), i.e.

(5.6) x(1, ®, 0, B)=0

s given by

(5.7) o =0, B = % cos ©
for |©] < /2.

Proof. Analytic continuation through the geometrically singular configuration
of fig. 4.3 at = 1 is established in lemma 4.1 and lemma 5.1. In particular (5.2)
implies ® = 0 and proves claim (5.7). D>
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We can now reinterpret our expansion of the solutions (2, ®, ©, B) of the scaled
characteristic equation (4.5) near 2 = 1 in terms of the original Hopf curves
(¥(w), b(w)) near the 1:1 resonance at w = wy, alias Q = 1; see (3.3), (3.16). In
terms of the scaled variables (2, ®, ©, B) of (4.3), (4.4) this means that we have
to evaluate the solutions (€2, ®, ©, B) along the hashing

(5.8) e =w=d+ (-1fr/2

of (4.6), with the angle congruence ® (mod 27) in S*. This provides the scaled
Hopf curves

(5.9) Q— (@(Q), B(Q)) .
Lemma 5.3. Fix any nonzero integer m € Z and consider
(5.10) Witom — 5 < w < Wipom + 2.

In scaled variables this corresponds to the hashing segment

3
—5 <P =w—wpyom < 5T

(5.11) Q—1=(®+2mm)e.

Then the scaled Hopf curve solutions of the scaled characteristic equation (4.5)
satisfy

(5.12) +0 = O(B) = 0,.o(B) + 2rm O, 1(B)e + ... ,

for e \\ 0, uniformly for B in compact subsets of (0, w/2). See (5.2) — (5.4) for
the coefficients ©1 ¢, ©1 1.

Proof. To show the hashing relation (5.11) between 2 —1 and ® we first observe
that

(5.13) =0 at w=uw.
Indeed the hashing definition (4.6) with £ = 1/wy, implies
d=Q/e+ (D r/2=(Q 1) /e +wp + (=1)"71/2 =

(5.14) =(Q-1)/e+ (k+ 1+ (-1)""/2)r
=(Q—1)/e (mod 27).

Here we have used that the coefficient of 7 is even, for any parity of k. Inserting
w = wy, alias Q@ = w/wy = 1, proves claim (5.13).

To show the hashing relation (5.11) for any nonzero integer m note that both Q /e
and ® coincide with w, up to an additive constant. Since wg, o, = wi + 2mm, by
definition (3.2) of wy = (k4 1/2)m, this implies (5.11).
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To show the shift (5.12) of the scaled Hopf curves, we invoke lemma 5.1 for ©.
Replacing (€2 — 1) in (5.3) by (5.11) we obtain

(515) +6 = @170(B)+@171(B> . ((I)+27Tm)€+

with higher order terms of order (2 — 1), alias €2. The expansion is uniform for
B in compact subsets of (0, 7/2). But (5.3) also implies that ® itself is of order
at most {2 — 1, alias €, uniformly for such B. Indeed ®; o = 0. Therefore we may
omit ® in the expansion (5.15) and the lemma is proved. D>

We conclude with a comment on the 1:1 Hopf resonance w = wy, aliasQ =1, & =
0. For w — wy, alias Q — 1 — 0, ® — 0, we naively combine the hashing (5.11)
with expansion (5.3) at the excluded case m = 0:

(5.16) Q—1=0c==4P, (B)c(Q—1)+....

Cancelling (Q — 1) on both sides leads to the illicit divergence ®; 1(B) = £e~ ' +
O(1) for € N\, 0. By further abuse of our derivation, (5.4) then implies

(517) B:Bltl = j:%g—‘— .

Direct inspection of the exact scaled characteristic equation (4.5) indeed veri-
fies (5.17), and shows

for any integer j. Alas, these resonances occur outside the region of interest for
the Pyragas control near the zero line B = 1. In particular the branch m = 0
of (5.12) is not a Hopf curve. Rather m = 0, alias {2 = 1, separates the Hopf
curves for positive integer m from negative m, due to positivity of ©; 1(B) for
0 < B < m/2. This observation also accounts for the resonance gap at Q = 1,
alias m = 0, in the hashing region of fig. 4.2. Indeed B = 0 there, as derived
in (5.17).

6 The Takens-Bogdanov Hopf curve

In this section we investigate the scaled Hopf curve
(6.1) ® — (O(P), B(®))

which emanates from the Takens-Bogdanov point (Jrg, brg) of (3.21), (3.22). In
our scaling (4.3), (4.4) this corresponds to the limit
d — Prp = (—1)*7/2

(62) Q = 6((13 — CDTB> —0
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which gives rise to the scaled limiting values
(6.3) O = (-1)"*',  Bpp=1.

Similarly to lemma 5.1, where 2 = 1, we now study the limit {2 = 0. In lemma 6.1
we eliminate the trivial solution

(6.4) Q0=0, B=1 O¢€cR

which corresponds to the zero line (3.21) in scaled variables. In fact we replace
B by the scaled variable 3 such that

(6.5) B=1+8Q, B:=(B-1)/Q,

and expand the solutions (O, ) of the scaled characteristic equation (4.5) in
terms of ® € S and small Q > 0. In lemma 6.2 we collect the hashing conse-
quences for the scaled Hopf curves, similarly to lemma 5.3.

Lemma 6.1. Let (O, B) solve the scaled characteristic equation (4.5) and con-
sider the scaled variable B of (6.5). Then (©, 3) depend real analytically on
Q, ® € S, for sufficiently small |Q]. At Q = 0 we have the expansions

O =600+ 012+ ..

(6.6) B = Bo,0+ Bo 12+ ...

with the explicit coefficients

@0’0 = sin (I), @071 =
Bo,0 = cos P, Bo,1 =

sin (20) ,

(6.7) —m?/2+ 1+ 3cos (20)) .

= o=

Proof. Inserting definition (6.5) of 5 into (4.5) we obtain equivalently
(6.8) (14 892)(1—Qe'®) — 1 =cos (£Q)e"?° — 1

where both sides vanish identically for 2 = 0. Dividing by 2 we obtain the
analytic expression

(6.9) B-(1—Qe"®) —e'® = cos (2Q)(e7"7° — 1)/Q + (cos (2Q) — 1)/,
for small 2. Indeed €2 = 0 provides
(6.10) By +i6y =e'?.

Differentiation at {2 = 0 provides the remaining expressions of (6.7). D>
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Lemma 6.2. Consider the Hopf curve
(6.11) 0<wr (O(w), Bw))

emanating from the Takens-Bogdanov point Org = (1)1 B =1 at w = 0.
Then for Q = cw \, 0 the following expansions hold true:

(—1)"© = —cos w + L (—1)fewsin (2w) + ... ,

(6:12) o LIV ()2 (2
(-1D)*(B —1) = ewsin w + (—1)"(ew)*(=7*/2 + 1 — 3cos (2w)) + ... .

In particular the tangent to the Hopf curve emanating at w = 0 is given by the
slope
dB

Proof. We insert the hashing (4.4) into the expansion (6.5) — (6.7) of (©, B) with
respect to 2 = ew. This proves the expansion (6.12). Letting w — 0 in (6.12)
proves the tangent (6.13), by cancellation of w?. This proves the lemma. D>

7 The zero line

In this section we investigate crossings of Hopf curves Q — (0(Q2), B(2)) with the
zero line B = 1. We use the explicit parametrization (4.7) of all solutions (®, ©)
of the scaled characteristic equation (4.5) in terms of (€2, B) in the domain (4.8);
see also fig. 4.2. See fig. 7.1 for the graphs of ® and © over 2 at B = 1. In
lemma 7.2 we determine all crossings of the Hopf curves with the horizontal line
B = 1, by hashing (4.6). In lemma 7.3 we study the directions in which the
Hopf curves cross the horizontal line B = 1 when their frequency w = Qe=! >
0 increases. This will keep track of strict unstable dimensions F, later, upon
crossing the Hopf lines along the zero line.

Specifically, the explicit solutions (4.7) of the characteristic equation (4.5) at the
zero line B =1 are given by £(®(€2), ©(Q2)) where

cos?2(ZQ) /(2 —1)2 -1

2

®(Q) := 2arctan [ (1-9 \/ @+ 12 — co(20) ;

o) = 51 . 22 — (1 — cos gQ)2
= arctan (1 + cos 207 — 2 )

For B =1 the domain (4.8) is 0 < 2 < 2. The Takens-Bogdanov limit 2 = 0 is
at (—1)*1(®(0), ©(0)) with

(7.1)

(7.2) 0)=72, ©O0)=1.
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Figure 7.1: The graphs of ®*, 0% = £(®(Q), O(Q)) of eaplicit solutions (4.7)
for the scaled characteristic equation (4.5) evaluated along the zero line B = 1.
Left: ®(Q2); right: ©(Q). Solid and dashed graphs indicate positive and negative
sign, respectively. Takens-Bogdanov points TB in the lower left corners, for even

k.

The limit at 2 = 2 is given by
(7.3) ®(2) =0, 0(2)=0.

We have taken —5 < @ < %’/T mod 27 and we have omitted branches +£0 + 275/
for nonzero integer j, which are outside our region of interest.

We prepare for the lemmas with a proposition on elementary properties of the
trigonometric functions ®(£2), ©(2). While the expansions are symbolic and
exact, we were unable to prove our convexity and monotonicity claims on ¢ and
O. Readers with a lot of spare time are encouraged to try. Instead we “verified”
these claims by checking the signs of ®”(Q2) and ©’(Q2) against high precision
numerical evaluations of the symbolic derivatives at 10° equidistant points in
each of the intervals 0 < 2 <1 and 1 < 2 < 2.

Proposition 7.1. Let 0 < < 2.

(i) We obtain the following expansions for ®(2), ©(Q) in (7.1) at 2 =10, 1, 2,
respectively. Omitted higher order terms are of order one higher than the
last written term, except where indicated otherwise.

ray PO = DR (455 -3 - )9+
Ve = 1- L33 - 63— 12t + 0@
d(Q) = (52 —1(Q—=1)+/(5)?—1(Q—1)"+
(75) PTG g ey

O(9) = arccos 2 + %«/% —1—arccos 2)(Q—1)+...
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B(Q) = —(2 - QY7+ 5(6(3)° - 1)(2 - )+

+ 515 (203)" 100 (32 -3)2-Q)P"+...
O(Q) = (22— L(6(%)* —13)(2 — )3~

o 19120( (%) + 60(%) - 529) (2 - 9)5/2 +...

(7.6)

(i1) By numerical evidence for 0 < < 2

(7.7) "(Q) > 0> 0'(Q).

(i1i)) We have the estimates

(7.8) =

Proof. The symbolic expansions of (7.4), (7.5) are straightforward, e.g. by any
symbolic package. The factor v/2 — €2 in the expansions (7.6) is generated by the
numerators inside the square roots of (7.1). Here we conveniently multiply that
numerator in ®(Q) by ( — 1)?. This proves (i).

We already pointed out how we “verified” (iii) numerically, for lack of improper
stamina.

The estimate (7.8) for ©(2) follows from the limits ©(0) = 1, ©(2) = 0 in (i)
and monotonicity (ii). Similarly, strict convexity of ® and the limits ®(0) =
/2, ®(2) = 0, ®'(0) = —(7% + 4)/8, ?'(2) = +oo prove the upper estimate
®(2) < m/2. The lower estimate is obtained by numerical approximation of the
unique minimum at ¢’(2) = 0. In fact the minimizer € is given by solving the
transcendental equation

(7.9) Q? — sin?(Qr/2) + sin (Q7) - Qw/2 =0

for 1 < Q < 2. >

To determine all crossing points © of Hopf curves Q — (O(Q2), B(f2)) with the
zero line B = 1 we recall the hashing (4.6) in the form

(7.10) e =w=wpiom+ P,

where m is integer and —7/2 < ® < 37/2. Here we have used ® = 0 at w =
wr = 1/e, Q = 1; see (5.13). We also used wy o, = wy + 2mm for wy:= (k + %)71’;
see (3.2). The constraint w > 0 then translates to

=—k/2, for even k,

(7.11) -
' m:=—(k+1)/2, forodd k&
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in (7.10). For odd k and m = m we have the additional constraint & > 7 /2. The
constraint 2 < 2 alias w < 2wy, on the other hand, translates to

m=k/2, for even k,

<
7.12 ~
(7.12) <m:=(k—-1)/2, forodd k.

For even k and m = ™ we have the additional constraint ® < 7/2. Note m =
[—k/2], m = [k/2] for all k, where [-] is the floor function.

Lemma 7.2. Any intersection of the Hopf curves (©(Q2), B())) with the zero
line B =1 in the region |©| < m — 1 occurs for some 0 < Q < 2.

More precisely, a complete list of intersection points is given as follows. For
0 < |m| <m, each interval wgiom — 7/2 < W < Witom + 37/2 contains exactly
two intersection points

1ot .+ _ +
(7.13) € Wiom = Wiom = W = Wipam + Ppo, -

The only exception is the additional case m = —m = —(k + 1)/2 for odd k,
where QF, = 0 is the Takens-Bogdanov point at T, = +n/2, and Q,,,, is

absent. For even k and m = —m we obtain the Takens-Bogdanov point Qy = 0
at by = —m/2.

In general | D ,,.| < 7/2 because

(7'14) CD%Jer = :tCID(Q]f+2m) .

The crossings occur at

(7.15) oF

k+2m — i@(wam) )

and hence for |©] < 1. For negative m, the ordering of the w-values is given by
(7.16)  0< ... < Wiiom < Whtam < Wiyom < Whtamtl < Wrpomas < --- < Wk -
For positive m, the £-order is reversed:

+ — +
(7.17) wi < ... < Wiom < Whtam < Whyom < Wktamtl < Wyiomps < - - < 2w .

Of course 0 < QerQm = swkiHm < 2 are ordered analogously. The absolute values

O3 .| are ordered strictly oppositely to Qi:.,,., i.e. they are ordered as —$i,,,,
are. More precisely

-1<... <06, ,, < —@LQm < @,;2(7”71) < ... < —arccos %,

+ —
< =0%iom < Oiamin)

(7.18)

—arccos%<...<@_

kt2m <...<0,

for positive m as in (7.12). For 0 < © < +1 these orders are reversed.
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With the abbreviation q:= arccos 2/m of (1.14) and for m = +1 we have the
erpansions

Qo =1x2me+ ...
(7.19) By = 1 B(Ysy) = 27y /(37— Lot
L@[ic:t2:L®(QLk:t2):qj:7r( (%)2—1—2q)5+,,,

Here v =+ and et = wy = (k+ 3)m — +o0, i.e. € — 0.

Proof. We address the general case 0 < |m| < m and leave the interesting but
special Takens-Bogdanov case to the eager reader. The bound |©*(Q)| < 1 fixes
the primary branch j = 0 in the region |©] < 7 — 1, 0 < Q < 2 of our interest;
see (7.1).

To obtain the intersections €, = we first solve the hashing relation (7.13) for €,
i.e.

(7.20) P ="' —wppom = (2 —1) (mod 27).

Here we have used wyyo, = wi + 2mm, again, and ewy, = 1. Because ®(2) = 0
and e ! = wp = +7/2 (mod 27), crossing does not occur at = 2.

By proposition 7.1, ®(Q2) is convex with bounded ®'(0) < 0 and ®'(2) = +o0.
This proves uniqueness of the solution Q. ,, := Q of (7.20). Moreover ®(2) > 0
for 0 < Q < 1 implies Q5. > Qusom:= €Witom, for m < 0 alias Qpiom <
1. Similarly ®(Q2) < 0 for 1 < Q < 2, after the unique sign change of ® at
Q) = 1, implies QLQm < Qpyom for m > 0. The remaining intersections {2 =
Q) 5, With the negative branch —®(2) are obtained analogously and prove the
inequalities (7.16), (7.17) except for one additional detail. We use |®(Q)| < 7/2,
for 0 < 2 < 2, to show the remaining inequalities

(7.21) Wityam = Wkiam + O o < Whiom +T/2 < Wiomir <

. < Wh2(m41) — T/2 < Wk+2(m+1) + (I)l;+2(m+1) = wl;+2(m+1) )

for m < 0, and similarly for m > 0. The bounds |®(Q2)| < 7/2 and |©(Q2)| < 1 also
follow from proposition 7.1, along with strict monotonicity of ©*(Q) = £0(Q).

To prove the expansions (7.19) we fix m = £1. From the hashing (7.20) we obtain
(7.22) e=¢(Q):=(Q—-1)/(tD(Q) +2mmn),

where ¢+ = 4. The right hand side defines a series expansion

(7.23) £ () = (1B(1) +2mr) (= 1)+ ...

for €4 (€2), with ®(1) = 0. Inverting this expansion as Qf ., = Q (¢) = 1 +
2mme+. .. we obtain the expansions for €, in (7.19). Substituting the resulting
series in the expansions (7.5) for ®(Q2), ©(Q2) at Q@ = 1 proves the remaining
expansions of (7.19), and the lemma. >
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Lemma 7.3. Let € > 0 be small enough and consider the region |0 < m — 1.

Then all crossings of Hopf curves w — (O(w), B(w)) with the zero line B = 1
are transverse with nonvanishing slope. The direction of the crossing is given by

(7.24) sign B'(w) = tsignm, sign ©'(w) = —signm,

at any crossing ew = Q5. © = O 5., L = £, of the Hopf curve; see lemma 7.2.

Proof. Let ' denote derivatives with respect to w at any Hopf crossing. Let
subscripts denote partial derivatives of the characteristic function y of (4.5) at
any crossing. By implicit differentiation of

(7.25) V(Qw), B(w), Ow), Bw)) =0
at x =0, B =1 we obtain
(7.26) ExatXe+xo O +xp-B =0.

Here we have used €' = ¢ and &' = 1. Note |yq| < C is uniformly bounded. To
solve (7.26) for ©', B’ let us consider the limiting case ¢ = 0 first. A subsequent
discussion of the case of small € > 0 will complete the proof.

For solutions of y = 0 on the zero line B = 1 we obtain the partial derivatives

(7.27) Xo =i cos (3) e 99,
XB = cos (5Q) e %9

Inserting (7.27) into (7.26) with e:= 0 we obtain

(7.28) cos (2Q)(B' +iQ0') = i Q20+,

For 0 < 2 < 2 and 2 # 1 this implies

B = —g} sin (20 + @)
cos (592)
(7.29) )
o 0s(00 + @
e cos (200 cos (20 + @)

both exist with crossing slope

dB
doe
Inserting (P, ©) = (9(Q2), ©4(N2)) = ¢ (P(Q), O()) for ¢« = £, and observing
the appropriate signs, (7.29) implies

(7.30) = —Q tan (R0 + D).

(7.31) sign B = —;sign (1 — Q) = tsignm,, sign ©' = —signm .
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Here we have used sign cos $) = sign (1 — ), sign©" = ¢, and the geometric
properties (4.11), (4.12) of proposition 4.2 with sign sin Q0" = «.

For small € > 0, our argument breaks down in C e-neighborhoods of 2 = 0, only.
Indeed |xe| = © dominates the term e xq elsewhere. The neighborhood of 2 = 0,
however, has already been studied in section 6. In particular the expansions of
lemma 6.2 confirm (7.24) in this region.

Near 2 = 1, Q20 + & = £ arccos 2/, the crossing occurs at large speed in the
parameter w, but the approximations (7.29), (7.30) of crossing direction and slope
remain valid. For € 7 2, finally, the crossing becomes nearly tangent but the
approximation (7.29) remains valid for € \, 0, because ¢ |yq| << |xs|- This
proves the lemma. >

8 The line of neutral Hopf tangencies

As a final preparation for our proof of theorems 1.1 and 1.2 we study the inter-
sections of Hopf curves with the half line © = 0, B > 1. This reduces the scaled
characteristic equation (4.5) to

(8.1) 0=x(2 @ 6=0B)=1-Q¢®— B "cos(20).

In lemma 8.1 we identify all such intersections (2, &, B) with B > 1. In
lemma 8.2 we show that all intersections are transverse. In fact each intersection
is used by two different Hopf curves at 2 = 1 +2Q /7 which cross with the same
near-horizontal tangent, but in opposite directions. See also figs. 1.2, 4.1, 10.1.
To emphasize this symmetry we also express our results in terms of

(8.2) Q=TQ-1), Q=1+2Q/r.

Lemma 8.1. All solutions of the characteristic equation (4.5) with © = 0 and
B > 1 satisfy ® = 0 (mod 27) and

(8.3) 0<Q<2, Q#1.
In particular the solutions are given by the equivalent expressions

W = Wgtom = Wk + 2mm
(8.4) Q = Qpyom = Witom/wip = 14 2mm /wy

Qzﬁgm =

k+wf/2 T
with integers m such that

(8.5) 0 < |m| < =[k/2].
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The crossings occur at the levels

cos (5Q42m) 7 sin Qo

8.6 B = Bjiom = = —
( ) w2 1 - Qk+2m 2 ng

€ (1,

Iy

).

In particular the levels By_oy = Biiom coincide because ﬁ_gm = —ﬁgm.

Proof. From the domain (4.8) we conclude
(8.7) 0<0Q<2
for B > 1. To prove claim (8.3) we successively exclude the cases Q € {0, 1, 2}.

We recall that 2 = 0 marks the Takens-Bogdanov point © = O = (—1)¥1 £ 0,
B = Brp = 1; see (3.22), (4.3). Therefore we only consider §2 > 0 and conclude
® =0 or =7 mod27 from (8.1).

Suppose ® = 7. Then (8.1) implies B = cos (5€2)/(1 + ) < 1, which is outside
our domain B > 1 of interest (but could easily be analyzed, as well). This proves
® =0.

For ® = 0 mod 27, which holds at w = wy, by (5.13), hashing (4.4) implies
(8.8) W = Wgyom = Wi + 2mm

for some integer m; see (8.4). This cannot hold at w = 2wy = wi, + (k + 1/2),
alias ) = 2. Hence we only have solutions 2 < 2.

At 1 = Q = w/wg, alias m = 0, we encounter the 1:1 resonance at Oy, =
2rj F /2 # 0, Biy = £5 e+ ...; see (5.17). Again this is excluded at © = 0.
This shows that Hopf intersections with the half line ® = 0, B > 1 can only
occur for ® =0 (mod27) and 0 < © < 2, Q # 1. This proves claim (8.3).

Substituting w = /e = Quwy, and (8.2) into (8.8) proves (8.4), (8.5). Solving (8.1)
for B proves (8.6), and the lemma. D

Lemma 8.2. In the setting of lemma 8.1 consider the intersections w = Wkiom,
0 < |m| <m = [k/2] of the Hopf curves w — (O(w), B(w)) with the half line
© =0,B>1. Let' denote derivatives with respect to the frequency parameter
w. Then all intersections are transverse crossings with the exact derivatives

o =-1/0,

(8.9) - .
B' = —£(Z)*(sin Q — Q cos Q)/Q°.

Here Q = Qo as given in (8.4), (8.5), and hence 0 < || < 7/2. In particular
crossings occur in opposite directions by opposite signs of Q@ = (2 — 1)7/2 at
Q= —Q; see (8.4). The exact crossing slopes coincide at Q0 = £, :

B o
(8.10) %:E%(SinQ—QCOSQ)/Q.

Note how the near-horizontal crossing slopes are uniformly small of order c.
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Proof. Analogously to (7.27) in the proof of lemma 7.3, we calculate
xo=—1+ %B_l cos

(8.11)

for the characteristic function x at © = 0, ® = 0, B = cos (59Q)/(1 — Q). By

implicit differentiation as in (7.25), (7.26) we obtain ©' = —xg/xe = —%/ﬁ and

B = —exq/xs. Substitution of Q for Q and B = cos (5)/(1-Q) = gﬁ‘l sin €,
as in (8.6), proves (8.9), (8.10), and the lemma. D

9 Proof of theorems 1.1 and 1.2

Using the results of sections 2 — 8, we are now ready to prove our main results,
theorems 1.1 and 1.2. We first identify the Pyragas region

(9.1) Pr=PfUP, : E(©, B)=0

of parameters (U, b) in the scaled variables (©, B) of (4.3). We recall from (3.4)
that £ counts the total algebraic multiplicity of eigenvalues p with Rep > 0 at
the bifurcation point A = A of supercritical Hopf bifurcation, as identified in
section 2.

In lemma 9.2 we show how each region P, is bounded by four curves
(9.2) Pi:  B=1; IY; Th.;

for . = 4+ and large enough k. Here B = 1 is the zero line of an eigenvalue y = 0
studied in lemma 3.4 and section 7. The Hopf curves I'} , are the Hopf curves
which cross the zero line B = 1 transversely at

(9.3) 9:@§€ﬂzb<qi7r( (g)2—1—2q)5+...>,

according to lemmas 7.2 and 7.2. Here ¢ = arccos 2/ = 0.88... < 1. The
Takens-Bogdanov Hopf curve I'Y, restricted to parameters 0 < w < 7, was studied
in section 6; see lemma 6.2 in particular.

In lemma 9.1 we determine
(9.4) EO©=1, B=1)=0

on the zero line B = 1 bounding the region P}, . By expansion (6.12) of the
Takens-Bogdanov Hopf curve I'?) we have

(9.5) sign (B — 1) = (=1)*
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in the Pyragas regions Pj. At © = 1q the crossing direction (3.23) of the critical
eigenvalue = 0 is given by

sign dp (O, B = 1) = (—1)*sign 9, u(9, brg) = sign (V1 — V) =

(9.6) = sign (O — O©) = sign ((—1)k+1 — Lq) = (—1)k+1 .

Here we have used scaling (4.3) and (6.3). The crossing direction (9.6) combines
with (9.4) to prove E(0, B) = 0 in the Pyragas region P, = P;f UP, of (9.1).

To complete the proofs of theorems 1.1, 1.2 we rewrite the boundary curves (9.2)
of Py, and their expansions, in terms of the original control variables (J, b); see
lemma 9.3.

Lemma 9.1. In the above notation

(9.7) E©=0,B=1)=

k, foreven k,
k—1, forodd k.

For v = £+ and small enough 0 < € = 1/wy this implies E(© = 1q, B = 1) = 0,
as claimed in (9.4).

Proof. We apply the jump property (3.18) in the (6O, B)-plane with B > 0. The
orientations of ¥ and © coincide. The substitution b = (—1)* 2B e switches the
orientation of b, but also the right and the left sides of non-vertical Hopf curves,
for odd k. Therefore (3.18) implies the jump property

(9.8) [E(©, B)[&" = -2
for all B > 0.

To prove claim (9.7) we apply the jump property (9.8) along the vertical half
line ® =0, B> 1. At B = 400, alias b = 0o, instability property (3.6) implies
E(© =0, B=+400) = E(A\) = k. Decreasing B from +oo to 1 along the half
line, lemma 8.1 reveals a finite sequence of [k/2] Hopf curves, which intersect in
pairs at decreasing levels B = By 9, = Bgiom € (1, w/2) form =1, ..., [k/2].
By lemma 8.2 each pair crosses the half line © = 0 transversely, and even with the
same tangent, but in opposite directions. Therefore the contribution of each pair
to the jumps (9.8) cancels. In consequence F(© = 0, B) = k for small enough
0 < B—1 << 1 below the last crossing at m = [k/2]. Invoking (9.6) at © = 0,
instead of © = 1q, proves claim (9.7).

To prove claim (9.4) we continue our itinerary from © = 0, B = 1 towards
© = ¢ = arccos 2/m, B = 1 along the zero line B = 1. We omit the analogous
considerations for © = —¢. By lemma 7.2 we encounter intersections at

(9-9) 0= ®:+2m = @(Qli_+2m) .

Since 0 < © < ¢ = ©(Q = 1) the values of Q = O, are restricted to 1 < Q < 2.

Here we have used that ©({2) is strictly decreasing; see proposition 7.1. This
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identifies the [k/2] intersections (9.9) to occur at positive m =1, 2, ..., [k/2];
see (7.12) and (7.17).

By lemma 7.3 the Hopf curves intersect the zero line B = 1 transversely at
© = O}y, Since m > 0,: = +, the direction is towards increasing B and
decreasing © in our case. Therefore the total unstable dimension £ = E(O, B =
1) decreases by 2 as O increases through any of the [k/2] crossing values © =

Of o, m =1,2, ..., [k/2]; see jump property (9.8) and the blue color coding
in figs. 1.2, 4.1. Hence
(9.10) E©=¢,B=1)=EO©=0,B=1)—-2[k/2]=0

for any parity of k, if we insert (9.7). This proves claim (9.4) and the lemma. <

Lemma 9.2. For ¢ > 0 small enough, the interior of the regions P*, 1 = =,
defined by their boundary curves B =1, T and [y 4 does not contain points on
any other Hopf curves.

Proof. Our proof is indirect. We assume that there exists a subsequence k — oo,
i.e. £ = 1/wy — 0, with associated solutions

of the scaled characteristic equation (4.5) with (©, By) in the interior of PT,
say. By compactness of the region of interest 0 < < 2, [Of] < 1, and
—7/2 < @), < 37/2 with &, € S', we may assume convergence to a limiting
solution

(9.12) (., ®., 0., B,) =0.
The definition of the region P* implies
(9.13) ©,=¢q=arccos 2/r and B,=1.

In case Q, > 0, section 7 implies ¢, = ®(€), O, = O(£,) and Q, = 1. In (7.5)
of proposition 7.1 we have studied the limit 2, — 1 and in lemma 5.3 we have
established uniform transversality of the Hopf curves to the zero line, in this limit.
In particular the Hopf curves m = £1 through © = 0}, do not admit any other
Hopf curves between them, in the limit 2 — 1. See also the resonance gap in
hashing fig. 4.2 and lemma 5.3.

It remains to consider the Takens-Bogdanov limit €2, — €, = 0. In this limit we
have the expansion (6.6), (6.7) of the spiraling Hopf curve which emanates from
the Takens-Bogdanov point Ot = (—1)*¥!, Brg = 1. In particular ©, = ¢ =
arccos 2/m implies

(9.14) ®, = arcsin ¢,

with sign (®* — 7/2) = (=1)*"!. Since all further branches of the Hopf spiral
possess larger distance B —1 = 3 from B = 1 than the first one T'Y, of 0 < w =
® — &g < 7, which defines the boundary of P*, there cannot be any further
Hopf curves in the interior of P+, for large enough k. This proves the lemma.
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Lemma 9.3. The curves B = 1, TY, Iy 4 transform to the curves b = by =
(—=1)*2/wr, v, .+ of theorem 1.1.

The expansions (6.11), (6.12) for I') and (5.2) - (5.4), (5.12), (7.19) for I}, .
imply the expansions (1.11) — (1.16) for the Pyragas regions Pj.

Proof. We aim for the precise symbolic expansions (1.11), (1.12), (1.14), (1.15);
the numerical evaluations (1.13), (1.16) are trivial consequences. To pass from
B, =1,T9, T} . tob= by, v, 7 + we only have to revert the scaling (4.3). In
terms of (©, B) the claims (1.11), (1.12) read

(9.15) By =1+ (-1)% 3be+...

(916) Z’i:Lqﬂ:@k_,_Q&—F...

with ¢, ©12, b}, and the slopes o}, of the approximating parallelograms given
by (1.14) — (1.15). Here expansions are only required up to errors of order 2.

By lemma 9.2, the value B = Bj approximates B for T'} in the region P*, and
© = O}, . approximates the intersection points of I’ . with the zero line B = 1.
The slopes o}, are the slopes of I'; | at intersection.

In lemma 7.2, (7.15) we have identified ©;, | = 1 O(},,). Expansion (7.19) for
O(1y) on I, . there implies (9.15) with ¢ and ©15 given by (1.14). This
proves claim (9.16).

To prove claim (9.15) we invoke expansion (6.12) for the curve I'Y : w — (O(w),
B(w)). Note 0 < w < 7 on I'). On the boundary part I'{ of P* we have
© =1q+ ..., up to order e. Therefore the ©-expansion in (6.12) implies w}, =
5+ (—1)k ¢ arcsin ¢ + ... up to order e. The B-expansion then asserts

(9.17) B=1+ (1) ew,sinw,+....
This implies (9.15) with
(9.18) b, = 2wy, sin wy, = (m 4 2®}) cos D,

if we substitute wi, = 5 + @} as in (1.15).

It remains to determine the slopes o = db/dVY = (—1)* 2dB/dO of the Hopf
curves 7 4, alias I'y o, at the crossings © = ©j , of the zero line B = 1;
see (1.16). Since the sides of P* have lengths of order £? it is sufficient to determine
the slopes o}, up to errors of order £. Since the crossings at © = O} | themselves
are e-close to © = 1 ¢, we can invoke (7.29), (7.30) and the expansions (7.19) to
conclude

B

o, =2(-1) )

+ o= (=D sin(ig) + ... =

(919) O=.q
=2(=D)"N J(E)2—1+....

Assertion (9.19) now proves claim (1.14) on o, and completes the proof of the
lemma and of theorem 1.2 alike. >
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10 Concluding remarks

Our analysis above has achieved noninvasive stabilization of periodic solutions
near Hopf bifurcation of scalar pure delay equations. Stabilization was achieved
by linear feedback control of Pyragas type

(10.1) () =Af(z(t—=1)) + b (x(t = 9) + (1) x(t — 9 — np/2)),

with real control amplitude 1/b, at the expense of introducing two more delays 9
and ¥+ np/2. Here p > 0 denoted the constant minimal period of the bifurcating
periodic solutions. Oddness of the nonlinearity f and of the bifurcating periodic
solutions enabled us to choose half-period delay n = 1 throughout the paper.
With the normalization f'(0) = 1, we succeeded to stabilize any supercritical
Hopf bifurcation at all parameters

(10.2) A= e = (=D)"wr, p=pp =21 wr, wp=(k+1/2)7;

see (1.6), (1.7) and theorems 1.1 and 1.2. In particular this demonstrates de-
layed feedback stabilization for any sufficiently large, even or odd unstable di-
mension k € Ny of the periodic orbits by the single linear control scheme (10.1).
There was no odd number limitation in our result. Differently from previous
results [Fie&al07, Fie08, Bly&al08, Cho&all4], our result did not require any
rotationally equivariant normal form of Stuart-Landau type, or any reduction to
such normal forms as in [BrPoSill]. The proper choices of feedback amplitudes
1/b and delay offsets ¢, however, turned out to be a delicate matter, with only
tiny Pyragas regions P* of guaranteed success.

In this concluding section we comment on the case of small k£ which is ignored by
our asymptotic analysis. Since we have not been able to detect, or even prove,
further Pyragas regions in our setting, we then comment on the promising case
n = k of delays at multiples n of the half-period p/2. We conclude with a broader
view of general delay equations and an open question on a more fundamental
apparent Floquet limitation of Pyragas control.

For low values £ = 1, ..., 4 we have sketched the resulting numerical Takens-
Bogdanov spirals in fig. 10.1. For & = 1 the Pyragas region E(O, B) = 0 is
bounded by the red part of the dashed horizontal zero line B = 1, from above,
and from below by the solid blue Hopf branch 'Y emanating from the solid black
Takens-Bogdanov point. All stability claims can easily be verified from the color
coding; see fig. 1.1 and the arguments in sections 8 and 9. The same horizontal
boundaries apply for k£ = 3, but an additional vertical boundary I', ,, ¢ = £ has
appeared from the top blue Hopf curve at © = 0. This splits the Pyragas region
E(©, B) = 0 into two connected components P+ underneath the horizontal red
dashed zero line B = 1. The first such splitting occurs, analogously, for k = 2
above the blue dashed zero line B = 1. The first case which features both addi-
tional boundaries I'}, | of the Pyragas regions P*, + = =, is k = 4. This numerical
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Figure 10.1: Zooms of the Takens-Bogdanov spirals as in fig. 4.1 for low hashing
values k =1, ..., 4. Unstable dimensions E(O, B) are indicated in parentheses.
The stabilized Pyragas regions (0), in green, are described in the text.

evidence supports our expectation that theorem 1.1 holds for all £ > 4, and ex-
tends to the remaining cases k = 1, 2, 3 with the above minor modifications.

For delayed feedbacks of the form (10.1) we did not detect other Pyragas regions
E(©, B) = 0 at half-period delay n = 1, for any £ > 0. The only other Pyra-
gas regions which we did encounter occurred for n = k at small values of ¥ > 0
and 1/|b|. Since these regions may be accessible to a two-scale analysis much
in the spirit, if not the letter, of the present paper we plan to address them on
another occasion.

For nonlinearities f which fail to be odd, an unresolved difficulty arises here.
Since periodic solutions of the pure delay equation lose their odd-symmetry prop-
erty (2.3), only even n are noninvasive. For odd k this puts Pyragas stabiliza-
tion (10.1) in limbo.

Although we only addressed the pure delay equation &(t) = Af(z(t — 1)) as our
target of delayed feedback control (10.1), more general (odd) delayed systems
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appear accessible. We mention

(10.3) i = f(\ z(t), z(t — 1))

with scalar or vectorial x. For some numerical observations in such settings
see [Bly&al08, Cho&sall4] for example. The only reason of our preference for the
pure delay equation was the ease of a coherent treatment of all Hopf bifurcations,
in section 2. This put proper emphasis on the prerequisite linear analysis of
characteristic equations.

Far from Hopf bifurcation such linear analysis at equilibria is not sufficient. Linear
instability of periodic orbits is then regulated by Floquet exponents 7 or their as-
sociated Floquet multipliers 1 = exp (np). In fact the mere study of Floquet the-
ory itself is a demanding subject for delay equations; see [MPSe96a, WalSku02,
SkuWal03, SkuWal05]. Only for rotating wave solutions in planar rotationally
equivariant ODE systems have we been able to study Pyragas stabilization of
periodic orbits with any mathematical rigor, so far. Much to our surprise we
encountered a Floquet limitation

(10.4) n<9,

for the Floquet exponent 7, beyond which it became impossible to stabilize the
periodic orbit; see [Fie08]. This bound held, independently of the particular
nonlinearity f, for nonlinear delayed feedback controls with delay off-set ¥ = 0
and general complex controls b. Our analysis heavily relied on equivariance. In
particular this allowed us to freeze the rotating wave by passing to co-rotating
coordinates. Only then could the required Floquet analysis be reduced to a
certain characteristic equation involving exponentials.

In our present example (10.1) Floquet exponents 7 of the bifurcating periodic
solutions are inherited from the eigenvalues p of the equilibrium x = 0 at bi-
furcation A = A;. The real part of the most unstable p grows like log k and
violates the bound (10.4). Nevertheless our control scheme did succeed. The
lowest unstable real part of u, on the other hand, is of order 2/k and does not
violate (10.4). This dominant Floquet exponent describes the exponential rate of
generic convergence to the periodic solution in backwards time, on the unstable
manifold. Whether or not a Floquet limitation for Pyragas control prevails in
nonequivariant ODE settings (1.1), or even the simplest delay settings (10.3) and
its pure delay variant (1.2), remains open for the dominant Floquet exponent.
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